Tuesday, 20 November 2012

CONSTELLATION

In modern astronomy, a constellation is an internationally defined area of the celestial sphere. These areas are grouped around asterisms (which themselves are generally referred to in non-technical language as "constellations"), which are patterns formed by prominent stars within apparent proximity to one another on Earth's night sky.

There are also numerous historical constellations not recognized by the IAU, or constellations recognized in regional traditions of astronomy or astrology, such as Chinese, Hindu and Australian Aboriginal.

Contents

[hide]

[edit] Terminology

The Late Latin term constellātiō can be translated as "set with stars". The term was first used in astrology, of asterisms that supposedly exerted influence, attested in Ammianus (4th century). In English the term was used from the 14th century, also in astrology, of conjunctions of planets. The modern astronomical sense of "area of the celestial sphere around a specific asterism" dates to the mid 16th century.
Colloquial usage does not distinguish the senses of "asterism" and "area surrounding an asterism". The modern system of constellations used in astronomy focuses primarily on constellations as grid-like segments of the celestial sphere rather than as patterns, while the term for a star-pattern is asterism. For example, the asterism known as the Big Dipper corresponds to the seven brightest stars of the larger IAU constellation of Ursa Major.
The term circumpolar constellation is used for any constellation that, from a particular latitude on Earth, never sets below the horizon. From the north pole, all constellations north of the celestial equator are circumpolar constellations. In the northern latitudes, the informal term equatorial constellation has sometimes used for constellations that lie to the south of the circumpolar constellations.[1] Depending on the definition, equatorial constellations can include those that lie entirely between declinations 45° north and 45° south,[2] or those that pass overhead between the tropics of Cancer and Capricorn. They generally include all constellations that intersect the celestial equator.

[edit] History

The current list of 88 constellations recognised by the International Astronomical Union since 1922 is based on the 48 listed by Ptolemy in his Almagest in the 2nd century.[3][4] Ptolemy's catalogue is informed by Eudoxus of Cnidus, a Greek astronomer of the 4th century BC who introduced earlier Babylonian astronomy to the Hellenistic culture. Of the 48 constellations listed by Ptolemy, thirty can be shown to have a much longer history, reaching back into at least the Late Bronze Age. This concerns the zodiacal constellations in particular.

[edit] Ancient Near East

The oldest catalogues of stars and constellations are from Old Babylonian astronomy, beginning in the Middle Bronze Age. The numerous Sumerian names in these catalogues suggest that they build on older, but otherwise unattested, Sumerian traditions of the Early Bronze Age. The classical Zodiac is a product of a revision of the Old Babylonian system in later Neo-Babylonian astronomy 6th century BC. Knowledge of the Neo-Babylonian zodiac is also reflected in the Hebrew Bible. E. W. Bullinger interpreted the creatures appearing in the books of Ezekiel (and thence in Revelation) as the middle signs of the four quarters of the Zodiac,[5][6] with the Lion as Leo, the Bull is Taurus, the Man representing Aquarius and the Eagle standing in for Scorpio.[7] The biblical Book of Job (dating to the 6th to 4th century BC) also makes reference to a number of constellations, including עיש `Ayish "bier", כסיל Kĕciyl "fool" and כימה Kiymah "heap" (Job 9:9, 38:31-32), rendered as "Arcturus, Orion and Pleiades" by the KJV, but `Ayish "the bier" actually corresponding to Ursa Major.[8] The term Mazzaroth מַזָּרֹות, a hapax legomenon in Job 38:32, may be the Hebrew word for the zodiacal constellations.
The Greeks adopted the Babylonian system in the 4th century BC. A total of twenty Ptolemaic constellations are directly continued from the Ancient Near East. Another ten have the same stars but different names.[9]

[edit] Graeco-Roman

[citation needed]
There is only limited information on indigenous Greek constellations. Some evidence is found in Hesiod.[clarification needed] Greek astronomy essentially adopted the older Babylonian system in the Hellenistic era, first introduced to Greece by Eudoxus of Cnidus in the 4th century BC. The original work of Eudoxus is lost, but it survives as a versification by Aratus, dating to the 3rd century BC. The most complete existing works dealing with the mythical origins of the constellations are by the Hellenistic writer termed pseudo-Eratosthenes and an early Roman writer styled pseudo-Hyginus.
The basis of western astronomy as taught during Late Antiquity and until the Early Modern period is the Almagest by Ptolemy, written in the 2nd century. Indian astronomy is also based on Hellenistic tradition, via transmission by the Indo-Greek kingdoms.

[edit] Classical Chinese constellations

In classical Chinese astronomy, the northern sky is divided geometrically, into five "enclosures" and twenty-eight mansions along the ecliptic, grouped into Four Symbols of seven asterisms each. The 28 lunar mansions are one of the most important and also the most ancient structures in the Chinese sky, attested from the 5th century BC. Parallels to the earliest Babylonian (Sumerian) star catalogues suggest that the ancient Chinese system did not arise independently from that of the Ancient Near East.[10] Classical Chinese astronomy is recorded in the Han period and appears in the form of three schools, which are attributed to astronomers of the Zhanguo period. The constellations of the three schools were conflated into a single system by Chen Zhuo, an astronomer of the 3rd century (Three Kingdoms period). Chen Zhuo's work has been lost, but information on his system of constellations survives in Tang period records, notably by Qutan Xida. The oldest extant Chinese star chart dates to the Tang period and was preserved as part of the Dunhuang Manuscripts. Native Chinese astronomy flourished during the Song Dynasty, and during the Yuan Dynasty became increasingly influenced by medieval Islamic astronomy.[11]

[edit] Early Modern era

The constellations around the South Pole were not observable from north of the equator, by Babylonians, Greeks, Chinese or Arabs.
The modern constellations in this region were defined during the age of exploration, notably by Dutch navigators Pieter Dirkszoon Keyser and Frederick de Houtman at the end of sixteenth century. They were depicted by Johann Bayer in his star atlas Uranometria of 1603. Several more were created by Nicolas Louis de Lacaille in his star catalogue, published in 1756.
Some modern proposals for new constellations were not successful; an example is Quadrans, eponymous of the Quadrantid meteors, now divided between Boötes and Draco. The classical constellation of Argo Navis was broken up into several different constellations, for the convenience of stellar cartographers.
By the end of the Ming Dynasty, Xu Guangqi introduced 23 asterisms of the southern sky based on the knowledge of western star charts.[12] These asterisms have since been incorporated into the traditional Chinese star maps.

[edit] IAU constellations

In 1922, Henry Norris Russell aided the IAU in dividing the celestial sphere into 88 official constellations.[13] Where possible, these modern constellations usually share the names of their Graeco-Roman predecessors, such as Orion, Leo or Scorpius. The aim of this system is area-mapping, i.e. the division of the celestial sphere into contiguous fields.[14] Out of the 88 modern constellations, 36 lie predominantly in the northern sky, and the other 52 predominantly in the southern.
In 1930, the boundaries between the 88 constellations were devised by Eugène Delporte along vertical and horizontal lines of right ascension and declination.[15] However, the data he used originated back to epoch B1875.0, which was when Benjamin A. Gould first made the proposal to designate boundaries for the celestial sphere, a suggestion upon which Delporte would base his work. The consequence of this early date is that due to the precession of the equinoxes, the borders on a modern star map, such as epoch J2000, are already somewhat skewed and no longer perfectly vertical or horizontal.[16] This effect will increase over the years and centuries to come.

[edit] Asterisms

Much of the dark space between stars, as seen in the sky of the image above, is due to the human eye's low light sensitivity. Other images (like the Hubble Deep Field – not pictured) detect far more stars.
The stars of the main asterism within a constellation are usually given Greek letters in their order of brightness, the so-called Bayer designation introduced by Johann Bayer in 1603. A total of 1,564 stars are so identified, out of approximately 10,000 stars visible to the naked eye.[17]
The brightest stars, usually the stars that make up the constellation's eponymous asterism, also retain proper names, often from Arabic. For example, the "Little Dipper" asterism of the constellation Ursa Minor has ten stars with Bayer designation, α UMi to π UMi. Of these ten stars, seven have a proper name, viz. Polaris (α UMi), Kochab (β UMi), Pherkad (γ UMi), Yildun (δ UMi), Urodelus (ε UMi), Ahfa al Farkadain (ζ UMi) and Anwar al Farkadain (η UMi).
The stars within an asterism rarely have any substantial astrophysical relationship to each other, and their apparent proximity when viewed from Earth disguises the fact that they are far apart, some being much farther from Earth than others. However, there are some exceptions: many of the stars in the constellation of Ursa Major (including most of the Big Dipper) are genuinely close to one another, travel through the galaxy with similar velocities, and are likely to have formed together as part of a cluster that is slowly dispersing. These stars form the Ursa Major moving group.

[edit] Dark cloud constellations

The "Emu in the sky," a constellation defined by dark clouds rather than the stars. An IAU interpretation would recognise Crux (the Southern Cross) above the emu's head and Scorpius on the left. The head of the emu is the Coalsack.
The Great Rift, a series of dark patches in the Milky Way, is more visible and striking in the southern hemisphere than in the northern. It vividly stands out when conditions are otherwise so dark that the Milky Way's central region casts shadows on the ground. Some cultures have discerned shapes in these patches and have given names to these "dark cloud constellations." Members of the Inca civilization identified various dark areas or dark nebulae in the Milky Way as animals, and associated their appearance with the seasonal rains.[18] Australian Aboriginal astronomy also describes dark cloud constellations, the most famous being the "emu in the sky

HUMAN BRAIN

The human brain has the same general structure as the brains of other mammals, but is larger than any other in relation to body size. Large animals such as whales and elephants have larger brains in absolute terms, but when measured using the encephalization quotient which compensates for body size, the human brain is almost twice as large as the brain of the bottlenose dolphin, and three times as large as the brain of a chimpanzee. Much of the expansion comes from the part of the brain called the cerebral cortex, especially the frontal lobes, which are associated with executive functions such as self-control, planning, reasoning, and abstract thought. The portion of the cerebral cortex devoted to vision is also greatly enlarged in humans.
The human cerebral cortex is a thick layer of neural tissue that covers most of the brain. This layer is folded in a way that increases the amount of surface that can fit into the volume available. The pattern of folds is similar across individuals, although there are many small variations. The cortex is divided into four "lobes", called the frontal lobe, parietal lobe, temporal lobe, and occipital lobe. (Some classification systems also include a limbic lobe and treat the insular cortex as a lobe.) Within each lobe are numerous cortical areas, each associated with a particular function such as vision, motor control, language, etc. The left and right sides of the cortex are broadly similar in shape, and most cortical areas are replicated on both sides. Some areas, though, show strong lateralization, particularly areas that are involved in language. In most people, the left hemisphere is "dominant" for language, with the right hemisphere playing only a minor role. There are other functions, such as spatiotemporal reasoning, for which the right hemisphere is usually dominant.
Despite being protected by the thick bones of the skull, suspended in cerebrospinal fluid, and isolated from the bloodstream by the blood–brain barrier, the human brain is susceptible to many types of damage and disease. The most common forms of physical damage are closed head injuries such as a blow to the head, a stroke, or poisoning by a variety of chemicals that can act as neurotoxins. Infection of the brain, though serious, is rare due to the biological barriers which protect it. The human brain is also susceptible to degenerative disorders, such as Parkinson's disease, multiple sclerosis, and Alzheimer's disease. A number of psychiatric conditions, such as schizophrenia and depression, are thought to be associated with brain dysfunctions, although the nature of such brain anomalies is not well understood.
Scientifically, the techniques that are used to study the human brain differ in important ways from those that are used to study other animal species. On the one hand, invasive techniques such as inserting electrodes into the brain, or disabling parts of the brain in order to examine the effect on behavior, can be used with non-human species, but for ethical reasons, are generally not performed with humans. On the other hand, humans are the only subjects who can respond to complex verbal instructions. Thus, it is often possible to use non-invasive techniques such as functional neuroimaging or EEG recording more productively with humans than with non-humans. Furthermore, some of the most important topics, such as language, can hardly be studied at all except in humans. In many cases, human and non-human studies form essential complements to each other. Individual brain cells can only be studied in non-humans; complex cognitive tasks can only be studied in humans. Combining the two sources of information to yield a complete functional understanding of the human brain is an ongoing challenge for neuroscience.

DIGESTION

Digestion is the mechanical and chemical breakdown of food into smaller components that are more easily absorbed into a blood stream, for instance. Digestion is a form of catabolism: a breakdown of large food molecules to smaller ones.
When food enters the mouth, its digestion starts by the action of mastication, a form of mechanical digestion, and the contact of saliva. Saliva, which is secreted by the salivary glands, contains salivary amylase, an enzyme which starts the digestion of starch in the food. After undergoing mastication and starch digestion, the food will be in the form of a small, round slurry mass called a bolus. It will then travel down the esophagus and into the stomach by the action of peristalsis. Gastric juice in the stomach starts protein digestion. Gastric juice mainly contains hydrochloric acid and pepsin. As these two chemicals may damage the stomach wall, mucus is secreted by the stomach, providing a slimy layer that acts as a shield against the damaging effects of the chemicals. At the same time protein digestion is occurring, mechanical mixing occurs by peristalsis, which are waves of muscular contractions that move along the stomach wall. This allows the mass of food to further mix with the digestive enzymes. After some time (typically an hour or two in humans, 4–6 hours in dogs, somewhat shorter duration in house cats), the resulting thick liquid is called chyme. When the pyloric sphincter valve opens, chyme enters the duodenum where it mixes with digestive enzymes from the pancreas, and then passes through the small intestine, in which digestion continues. When the chyme is fully digested, it is absorbed into the blood. 95% of absorption of nutrients occurs in the small intestine. Water and minerals are reabsorbed back into the blood in the colon (large intestine) where the pH is slightly acidic about 5.6 ~ 6.9. Some vitamins, such as biotin and vitamin K (K2MK7) produced by bacteria in the colon are also absorbed into the blood in the colon.[1] Waste material is eliminated from the rectum during defecation.[2]

Contents

[hide]

[edit] Digestive systems

Digestive systems take many forms. There is a fundamental distinction between internal and external digestion. External digestion is more primitive, and most fungi still rely on it.[3] In this process, enzymes are secreted into the environment surrounding the organism, where they break down an organic material, and some of the products diffuse back to the organism. Later, animals form a tube in which internal digestion occurs, which is more efficient because more of the broken down products can be captured, and the internal chemical environment can be more efficiently controlled.[4]
Some organisms, including nearly all spiders, simply secrete biotoxins and digestive chemicals (e.g., enzymes) into the extracellular environment prior to ingestion of the consequent "soup". In others, once potential nutrients or food is inside the organism, digestion can be conducted to a vesicle or a sac-like structure, through a tube, or through several specialized organs aimed at making the absorption of nutrients more efficient.
Schematic drawing of bacterial conjugation. 1- Donor cell produces pilus. 2- Pilus attaches to recipient cell, bringing the two cells together. 3- The mobile plasmid is nicked and a single strand of DNA is transferred to the recipient cell. 4- Both cells recircularize their plasmids, synthesize second strands, and reproduce pili; both cells are now viable donors.

[edit] Secretion systems

Bacteria use several systems to obtain nutrients from other organisms in the environments.

[edit] Channel transport system

In a channel transupport system, several proteins form a contiguous channel traversing the inner and outer membranes of the bacteria. It is a simple system, which consists of only three protein subunits: the ABC protein, membrane fusion protein (MFP), and outer membrane protein (OMP)[specify]. This secretion system transports various molecules, from ions, drugs, to proteins of various sizes (20 - 900 kDa). The molecules secreted vary in size from the small Escherichia coli peptide colicin V, (10 kDa) to the Pseudomonas fluorescens cell adhesion protein LapA of 900 kDa.[5]

[edit] Molecular syringe

One molecular syringe is used through which a bacterium (e.g. certain types of Salmonella, Shigella, Yersinia) can inject nutrients into protist cells. One such mechanism was first discovered in Y. pestis and showed that toxins could be injected directly from the bacterial cytoplasm into the cytoplasm of its host's cells rather than simply be secreted into the extracellular medium.[6]

[edit] Conjugation machinery

The conjugation machinery of some bacteria (and archaeal flagella) is capable of transporting both DNA and proteins. It was discovered in Agrobacterium tumefaciens, which uses this system to introduce the Ti plasmid and proteins into the host, which develops the crown gall (tumor).[7] The VirB complex of Agrobacterium tumefaciens is the prototypic system.[8]
The nitrogen fixing Rhizobia are an interesting case, wherein conjugative elements naturally engage in inter-kingdom conjugation. Such elements as the Agrobacterium Ti or Ri plasmids contain elements that can transfer to plant cells. Transferred genes enter the plant cell nucleus and effectively transform the plant cells into factories for the production of opines, which the bacteria use as carbon and energy sources. Infected plant cells form crown gall or root tumors. The Ti and Ri plasmids are thus endosymbionts of the bacteria, which are in turn endosymbionts (or parasites) of the infected plant.
The Ti and Ri plasmids are themselves conjugative. Ti and Ri transfer between bacteria uses an independent system (the tra, or transfer, operon) from that for inter-kingdom transfer (the vir, or virulence, operon). Such transfer creates virulent strains from previously avirulent Agrobacteria.

[edit] Release of outer membrane vesicles

In addition to the use of the multiprotein complexes listed above, Gram-negative bacteria possess another method for release of material: the formation of outer membrane vesicles.[9] Portions of the outer membrane pinch off, forming spherical structures made of a lipid bilayer enclosing periplasmic materials. Vesicles from a number of bacterial species have been found to contain virulence factors, some have immunomodulatory effects, and some can directly adhere to and intoxicate host cells. While release of vesicles has been demonstrated as a general response to stress conditions, the process of loading cargo proteins seems to be selective.[10]
Venus Flytrap (Dionaea muscipula) leaf

[edit] Gastrovascular cavity

The gastrovascular cavity functions as a stomach in both digestion and the distribution of nutrients to all parts of the body. Extracellular digestion takes place within this central cavity, which is lined with the gastrodermis, the internal layer of epithelium. This cavity has only one opening to the outside that functions as both a mouth and an anus: waste and undigested matter is excreted through the mouth/anus, which can be described as an incomplete gut.
In a plant such as the Venus Flytrap that can make its own food through photosynthesis, it does not eat and digest its prey for the traditional objectives of harvesting energy and carbon, but mines prey primarily for essential nutrients (nitrogen and phosphorus in particular) that are in short supply in its boggy, acidic habitat.[11]
Trophozoites of Entamoeba histolytica with ingested erythrocytes

[edit] Phagosome

A phagosome is a vacuole formed around a particle absorbed by phagocytosis. The vacuole is formed by the fusion of the cell membrane around the particle. A phagosome is a cellular compartment in which pathogenic microorganisms can be killed and digested. Phagosomes fuse with lysosomes in their maturation process, forming phagolysosomes. In humans, Entamoeba histolytica can phagocytose red blood cells.[12]

[edit] Specialised organs and behaviours

To aid in the digestion of their food animals evolved organs such as beaks, tongues, teeth, a crop, gizzard, and others.
A Catalina Macaw's seed-shearing beak
Squid beak with ruler for size comparison

[edit] Beaks

Birds have beaks that are specialised according to the bird's ecological niche. For example, macaws primarily eat seeds, nuts, and fruit, using their impressive beaks to open even the toughest seed. First they scratch a thin line with the sharp point of the beak, then they shear the seed open with the sides of the beak.
The mouth of the squid is equipped with a sharp horny beak mainly made of cross-linked proteins. It is used to kill and tear prey into manageable pieces. The beak is very robust, but does not contain any minerals, unlike the teeth and jaws of many other organisms, including marine species.[13] The beak is the only indigestible part of the squid.

[edit] Tongue

The tongue is skeletal muscle on the floor of the mouth that manipulates food for chewing (mastication) and swallowing (deglutition). It is sensitive and kept moist by saliva. The underside of the tongue is covered with a smooth mucous membrane. The tongue also has a touch sense for locating and positioning food particles that require further chewing. The tongue is utilized to roll food particles into a bolus before being transported down the esophagus through peristalsis.
The sublingual region underneath the front of the tongue is a location where the oral mucosa is very thin, and underlain by a plexus of veins. This is an ideal location for introducing certain medications to the body. The sublingual route takes advantage of the highly vascular quality of the oral cavity, and allows for the speedy application of medication into the cardiovascular system, bypassing the gastrointestinal tract.

[edit] Teeth

Teeth (singular tooth) are small whitish structures found in the jaws (or mouths) of many vertebrates that are used to tear, scrape, milk and chew food. Teeth are not made of bone, but rather of tissues of varying density and hardness. The shape of an animal's teeth is related to its diet. For example, plant matter is hard to digest, so herbivores have many molars for chewing.
The teeth of carnivores are shaped to kill and tear meat, using specially shaped canine teeth. Herbivores' teeth are made for grinding food materials, in this case, plant parts.

[edit] Crop

A crop, or croup, is a thin-walled expanded portion of the alimentary tract used for the storage of food prior to digestion. In some birds it is an expanded, muscular pouch near the gullet or throat. In adult doves and pigeons, the crop can produce crop milk to feed newly hatched birds.[14]
Certain insects may have a crop or enlarged esophagus.
Rough illustration of a ruminant digestive system

[edit] Abomasum

Herbivores have evolved cecums (or an abomasum in the case of ruminants). Ruminants have a fore-stomach with four chambers. These are the rumen, reticulum, omasum, and abomasum. In the first two chambers, the rumen and the reticulum, the food is mixed with saliva and separates into layers of solid and liquid material. Solids clump together to form the cud (or bolus). The cud is then regurgitated, chewed slowly to completely mix it with saliva and to break down the particle size.
Fibre, especially cellulose and hemi-cellulose, is primarily broken down into the volatile fatty acids, acetic acid, propionic acid and butyric acid in these chambers (the reticulo-rumen) by microbes: (bacteria, protozoa, and fungi). In the omasum water and many of the inorganic mineral elements are absorbed into the blood stream.
The abomasum is the fourth and final stomach compartment in ruminants. It is a close equivalent of a monogastric stomach (e.g., those in humans or pigs), and digesta is processed here in much the same way. It serves primarily as a site for acid hydrolysis of microbial and dietary protein, preparing these protein sources for further digestion and absorption in the small intestine. Digesta is finally moved into the small intestine, where the digestion and absorption of nutrients occurs. Microbes produced in the reticulo-rumen are also digested in the small intestine.
A flesh fly "blowing a bubble", possibly to concentrate its food by evaporating water

[edit] Specialised behaviours

Regurgitation has been mentioned above under abomasum and crop, referring to crop milk, a secretion from the lining of the crop of pigeons and doves with which the parents feed their young by regurgitation.[15]
Many sharks have the ability to turn their stomachs inside out and evert it out of their mouths in order to get rid of unwanted contents (perhaps developed as a way to reduce exposure to toxins).
Other animals, such as rabbits and rodents, practise coprophagia behaviours - eating specialised faeces in order to re-digest food, especially in the case of roughage. Capybara, rabbits, hamsters and other related species do not have a complex digestive system as do, for example, ruminants. Instead they extract more nutrition from grass by giving their food a second pass through the gut. Soft faecal pellets of partially digested food are excreted and generally consumed immediately. They also produce normal droppings, which are not eaten.
Young elephants, pandas, koalas, and hippos eat the faeces of their mother, probably to obtain the bacteria required to properly digest vegetation. When they are born, their intestines do not contain these bacteria (they are completely sterile). Without them, they would be unable to get any nutritional value from many plant components.

[edit] In earthworms

An earthworm's digestive system consists of a mouth, pharynx, esophagus, crop, gizzard, and intestine. The mouth is surrounded by strong lips, which act like a hand to grab pieces of dead grass, leaves, and weeds, with bits of soil to help chew. The lips break the food down into smaller pieces. In the pharynx, the food is lubricated by mucus secretions for easier passage. The esophagus adds calcium carbonate to neutralize the acids formed by food matter decay. Temporary storage occurs in the crop where food and calcium carbonate are mixed. The powerful muscles of the gizzard churn and mix the mass of food and dirt. When the churning is complete, the glands in the walls of the gizzard add enzymes to the thick paste, which helps chemically breakdown the organic matter. By peristalsis, the mixture is sent to the intestine where friendly bacteria continue chemical breakdown. This releases carbohydrates, protein, fat, and various vitamins and minerals for absorption into the body.

[edit] Overview of vertebrate digestion

In most vertebrates, digestion is a multi-stage process in the digestive system, starting from ingestion of raw materials, most often other organisms. Ingestion usually involves some type of mechanical and chemical processing. Digestion is separated into four steps:
  1. Ingestion: placing food into the mouth (entry of food in the digestive system),
  2. Mechanical and chemical breakdown: mastication and the mixing of the resulting bolus with water, acids, bile and enzymes in the stomach and intestine to break down complex molecules into simple structures,
  3. Absorption: of nutrients from the digestive system to the circulatory and lymphatic capillaries through osmosis, active transport, and diffusion, and
  4. Egestion (Excretion): Removal of undigested materials from the digestive tract through defecation.
Underlying the process is muscle movement throughout the system through swallowing and peristalsis. Each step in digestion requires energy, and thus imposes an "overhead charge" on the energy made available from absorbed substances. Differences in that overhead cost are important influences on lifestyle, behavior, and even physical structures. Examples may be seen in humans, who differ considerably from other hominids (lack of hair, smaller jaws and musculature, different dentition, length of intestines, cooking, etc.).
The major part of digestion takes place in the small intestine. The large intestine primarily serves as a site for fermentation of indigestible matter by gut bacteria and for resorption of water from digesta before excretion.
In mammals, preparation for digestion begins with the cephalic phase in which saliva is produced in the mouth and digestive enzymes are produced in the stomach. Mechanical and chemical digestion begin in the mouth where food is chewed, and mixed with saliva to begin enzymatic processing of starches. The stomach continues to break food down mechanically and chemically through churning and mixing with both acids and enzymes. Absorption occurs in the stomach and gastrointestinal tract, and the process finishes with defecation.[2]

[edit] Human digestion process

Salivary glandsParotid glandSubmandibular glandSublingual glandpharynxTongueEsophagusPancreasStomachPancreatic ductIleumAnusRectumVermiform appendixCecumDescending colonAscending colonTransverse colonColon (anatomy)Bile ductDuodenumGallbladderLiveroral cavity
Upper and Lower human gastrointestinal tract
The whole digestive system is around 9 meters long. In a healthy human adult this process can take between 24 and 72 hours. Food digestion physiology varies between individuals and upon other factors such as the characteristics of the food and size of the meal.[16]

[edit] Phases of gastric secretion

  • Cephalic phase - This phase occurs before food enters the stomach and involves preparation of the body for eating and digestion. Sight and thought stimulate the cerebral cortex. Taste and smell stimulus is sent to the hypothalamus and medulla oblongata. After this it is routed through the vagus nerve and release of acetylcholine. Gastric secretion at this phase rises to 40% of maximum rate. Acidity in the stomach is not buffered by food at this point and thus acts to inhibit parietal (secretes acid) and G cell (secretes gastrin) activity via D cell secretion of somatostatin.
  • Gastric phase - This phase takes 3 to 4 hours. It is stimulated by distension of the stomach, presence of food in stomach and decrease in pH. Distention activates long and myenteric reflexes. This activates the release of acetylcholine, which stimulates the release of more gastric juices. As protein enters the stomach, it binds to hydrogen ions, which raises the pH of the stomach. Inhibition of gastrin and gastric acid secretion is lifted. This triggers G cells to release gastrin, which in turn stimulates parietal cells to secrete gastric acid. Gastric acid is about 0.5% hydrochloric acid (HCl), which lowers the pH to the desired pH of 1-3. Acid release is also triggered by acetylcholine and histamine.
  • Intestinal phase - This phase has 2 parts, the excitatory and the inhibitory. Partially digested food fills the duodenum. This triggers intestinal gastrin to be released. Enterogastric reflex inhibits vagal nuclei, activating sympathetic fibers causing the pyloric sphincter to tighten to prevent more food from entering, and inhibits local reflexes.

[edit] Oral cavity

In humans, digestion begins in the Mouth, otherwise known as the "Buccal Cavity", where food is chewed. Saliva is secreted in large amounts (1-1.5 litres/day) by three pairs of exocrine salivary glands (parotid, submandibular, and sublingual) in the oral cavity, and is mixed with the chewed food by the tongue. Saliva cleans the oral cavity, moistens the food, and contains digestive enzymes such as salivary amylase, which aids in the chemical breakdown of polysaccharides such as starch into disaccharides such as maltose. It also contains mucus, a glycoprotein that helps soften the food and form it into a bolus. An additional enzyme, lingual lipase, hydrolyzes long-chain triglycerides into partial glycerides and free fatty acids.
Swallowing transports the chewed food into the esophagus, passing through the oropharynx and hypopharynx. The mechanism for swallowing is coordinated by the swallowing center in the medulla oblongata and pons. The reflex is initiated by touch receptors in the pharynx as the bolus of food is pushed to the back of the mouth.

[edit] Pharynx

The pharynx is the part of the neck and throat situated immediately behind the mouth and nasal cavity, and cranial, or superior, to the esophagus. It is part of the digestive system and respiratory system. Because both food and air pass through the pharynx, a flap of connective tissue, the epiglottis closes over the trachea when food is swallowed to prevent choking or asphyxiation.
The oropharynx is that part of the pharynx behind the oral cavity. It is lined with stratified squamous epithelium. The nasopharynx lies behind the nasal cavity and like the nasal passages is lined with ciliated columnar pseudostratified epithelium.
Like the oropharynx above it the hypopharynx (laryngopharynx) serves as a passageway for food and air and is lined with a stratified squamous epithelium. It lies inferior to the upright epiglottis and extends to the larynx, where the respiratory and digestive pathways diverge. At that point, the laryngopharynx is continuous with the esophagus. During swallowing, food has the "right of way", and air passage temporarily stops.

[edit] Esophagus

The esophagus is a narrow muscular tube about 20-30 centimeters long, which starts at the pharynx at the back of the mouth, passes through the thoracic diaphragm, and ends at the cardiac orifice of the stomach. The wall of the esophagus is made up of two layers of smooth muscles, which form a continuous layer from the esophagus to the colon and contract slowly, over long periods of time. The inner layer of muscles is arranged circularly in a series of descending rings, while the outer layer is arranged longitudinally. At the top of the esophagus, is a flap of tissue called the epiglottis that closes during swallowing to prevent food from entering the trachea (windpipe). The chewed food is pushed down the esophagus to the stomach through peristaltic contraction of these muscles. It takes only about seven seconds for food to pass through the esophagus and now digestion takes place.


[edit] Stomach

The stomach is a small, 'J'-shaped pouch with walls made of thick, distensible muscles, which stores and helps break down food. Food reduced to very small particles is more likely to be fully digested in the small intestine, and stomach churning has the effect of assisting the physical disassembly begun in the mouth. Ruminants, who are able to digest fibrous material (primarily cellulose), use fore-stomachs and repeated chewing to further the disassembly. Rabbits and some other animals pass some material through their entire digestive systems twice. Most birds ingest small stones to assist in mechanical processing in gizzards.
Food enters the stomach through the cardiac orifice where it is further broken apart and thoroughly mixed with gastric acid, pepsin and other digestive enzymes to break down proteins. The enzymes in the stomach also have an optimum conditions, meaning that they work at a specific pH and temperature better than any others. The acid itself does not break down food molecules, rather it provides an optimum pH for the reaction of the enzyme pepsin and kills many microorganisms that are ingested with the food. It can also denature proteins. This is the process of reducing polypeptide bonds and disrupting salt bridges, which in turn causes a loss of secondary, tertiary, or quaternary protein structure. The parietal cells of the stomach also secrete a glycoprotein called intrinsic factor, which enables the absorption of vitamin B-12. Mucus neck cells are present in the gastric glands of the stomach. They secrete mucus, which along with gastric juice plays an important role in lubrication and protection of the mucosal epithelium from excoriation by the highly concentrated hydrochloric acid. Other small molecules such as alcohol are absorbed in the stomach, passing through the membrane of the stomach and entering the circulatory system directly. Food in the stomach is in semi-liquid form, which upon completion is known as chyme.
After consumption of food, digestive "tonic" and peristaltic contractions begin, which helps break down the food and move it onward.[16] When the chyme reaches the opening to the duodenum known as the pylorus, contractions "squirt" the food back into the stomach through a process called retropulsion, which exerts additional force and further grinds down food into smaller particles.[16] Gastric emptying is the release of food from the stomach into the duodenum; the process is tightly controlled with liquids being emptied much more quickly than solids.[16] Gastric emptying has attracted medical interest as rapid gastric emptying is related to obesity and delayed gastric emptying syndrome is associated with diabetes mellitus, aging, and gastroesophageal reflux.[16]
The transverse section of the alimentary canal reveals four (or five, see description under mucosa) distinct and well developed layers within the stomach:
  • Serous membrane, a thin layer of mesothelial cells that is the outermost wall of the stomach.
  • Muscular coat, a well-developed layer of muscles used to mix ingested food, composed of three sets running in three different alignments. The outermost layer runs parallel to the vertical axis of the stomach (from top to bottom), the middle is concentric to the axis (horizontally circling the stomach cavity) and the innermost oblique layer, which is responsible for mixing and breaking down ingested food, runs diagonal to the longitudinal axis. The inner layer is unique to the stomach, all other parts of the digestive tract have only the first two layers.
  • Submucosa, composed of connective tissue that links the inner muscular layer to the mucosa and contains the nerves, blood and lymph vessels.
  • Mucosa is the extensively folded innermost layer. It can be divided into the epithelium, lamina propria, and the muscularis mucosae, though some consider the outermost muscularis mucosae to be a distinct layer, as it develops from the mesoderm rather than the endoderm (thus making a total of five layers). The epithelium and lamina are filled with connective tissue and covered in gastric glands that may be simple or branched tubular, and secrete mucus, hydrochloric acid, pepsinogen and rennin. The mucus lubricates the food and also prevents hydrochloric acid from acting on the walls of the stomach.

[edit] Small intestine

It has three parts: the Duodenum, Jejunum, and Ileum.
After being processed in the stomach, food is passed to the small intestine via the pyloric sphincter. The majority of digestion and absorption occurs here after the milky chyme enters the duodenum. Here it is further mixed with three different liquids:
The pH level increases in the small intestine as all three fluids are alkaline. A more basic environment causes more helpful enzymes to activate and begin to help in the breakdown of molecules such as fat globules. Small, finger-like structures called villi, and their epithelial cells is covered with numerous microvilli to improve the absorption of nutrients by increasing the surface area of the intestine and enhancing speed at which nutrients are absorbed. Blood containing the absorbed nutrients is carried away from the small intestine via the hepatic portal vein and goes to the liver for filtering, removal of toxins, and nutrient processing.
The small intestine and remainder of the digestive tract undergoes peristalsis to transport food from the stomach to the rectum and allow food to be mixed with the digestive juices and absorbed. The circular muscles and longitudinal muscles are antagonistic muscles, with one contracting as the other relaxes. When the circular muscles contract, the lumen becomes narrower and longer and the food is squeezed and pushed forward. When the longitudinal muscles contract, the circular muscles relax and the gut dilates to become wider and shorter to allow food to enter.

[edit] Large intestine

After the food has been passed through the small intestine, the food enters the large intestine. Within it, digestion is retained long enough to allow fermentation due to the action of gut bacteria, which breaks down some of the substances that remain after processing in the small intestine; some of the breakdown products are absorbed. In humans, these include most complex saccharides (at most three disaccharides are digestible in humans). In addition, in many vertebrates, the large intestine reabsorbs fluid; in a few, with desert lifestyles, this reabsorbtion makes continued existence possible.
In general, the large intestine is less vigorous in absorptive activity. It produces sacculation, renews epithelial cells, and provides protective mucus and mucosal immunity. In humans, the large intestine is roughly 1.5 meters long, with three parts: the cecum at the junction with the small intestine, the colon, and the rectum. The colon itself has four parts: the ascending colon, the transverse colon, the descending colon, and the sigmoid colon. The large intestine absorbs water from the chyme and stores feces until it can be egested. Food products that cannot go through the villi, such as cellulose (dietary fiber), are mixed with other waste products from the body and become hard and concentrated feces. The feces is stored in the rectum for a certain period and then the stored feces is eliminated from the body due to the contraction and relaxation through the anus. The exit of this waste material is regulated by the anal sphincter.

[edit] Breakdown into nutrients

[edit] Protein digestion

Protein digestion occurs in the stomach and duodenum in which 3 main enzymes, pepsin secreted by the stomach and trypsin and chymotrypsin secreted by the pancreas, break down food proteins into polypeptides that are then broken down by various exopeptidases and dipeptidases into amino acids. The digestive enzymes however are mostly secreted as their inactive precursors, the zymogens. For example, trypsin is secreted by pancreas in the form of trypsinogen, which is activated in the duodenum by enterokinase to form trypsin. Trypsin then cleaves proteins to smaller polypeptides.

[edit] Fat digestion

Digestion of some fats can begin in the mouth where lingual lipase breaks down some short chain lipids into diglycerides. The presence of fat in the small intestine produces hormones that stimulate the release of pancreatic lipase from the pancreas and bile from the liver for breakdown of fats into fatty acids. Complete digestion of one molecule of fat (a triglyceride) results in 3 fatty acid molecules and one glycerol molecule.

[edit] Carbohydrate digestion

In humans, dietary starches are composed of glucose units arranged in long chains called amylose, a polysaccharide. During digestion, bonds between glucose molecules are broken by salivary and pancreatic amylase, resulting in progressively smaller chains of glucose. This results in simple sugars glucose and maltose (2 glucose molecules) that can be absorbed by the small intestine.
Lactase is an enzyme that breaks down the disaccharide lactose to its component parts, glucose and galactose. Glucose and galactose can be absorbed by the small intestine. Approximately half of the adult population produce only small amounts of lactase and are unable to eat milk-based foods. This is commonly known as lactose intolerance.
Sucrase is an enzyme that breaks down the disaccharide sucrose, commonly known as table sugar, cane sugar, or beet sugar. Sucrose digestion yields the sugars fructose and glucose which are readily absorbed by the small intestine.

[edit] DNA and RNA digestion

DNA and RNA are broken down into mononucleotides by the nucleases deoxyribonuclease and ribonuclease (DNase and RNase) from the pancreas.

[edit] Digestive hormones

Action of the major digestive hormones
There are at least five hormones that aid and regulate the digestive system in mammals. There are variations across the vertebrates, as for instance in birds. Arrangements are complex and additional details are regularly discovered. For instance, more connections to metabolic control (largely the glucose-insulin system) have been uncovered in recent years.

[edit] Significance of pH in digestion

Digestion is a complex process controlled by several factors. pH plays a crucial role in a normally functioning digestive tract. In the mouth, pharynx, and esophagus, pH is typically about 6.8, very weakly acidic. Saliva controls pH in this region of the digestive tract. Salivary amylase is contained in saliva and starts the breakdown of carbohydrates into monosaccharides. Most digestive enzymes are sensitive to pH and will denature in a high or low pH environment.
The stomach's high acidity inhibits the breakdown of carbohydrates within it. This acidity confers two benefits: it denatures proteins for further digestion in the small intestines, and provides non-specific immunity, damaging or eliminating various pathogens.[citation needed]
In the small intestines, the duodenum provides critical pH balancing to activate digestive enzymes. The liver secretes bile into the duodenum to neutralize the acidic conditions from the stomach, and the pancreatic duct empties into the duodenum, adding bicarbonate to neutralize the acidic chyme, thus creating a neutral environment. The mucosal tissue of the small intestines is alkaline with a pH of about 8.5.[citation needed]

[edit] Uses of animal's internal organs by humans

  • The stomachs of calves have commonly been used as a source of rennet for making cheese.
  • The use of animal gut strings by musicians can be traced back to the third dynasty of Egypt. In the recent past, strings were made out of lamb gut. With the advent of the modern era, musicians have tended to use strings made of silk, or synthetic materials such as nylon or steel. Some instrumentalists, however, still use gut strings in order to evoke the older tone quality. Although such strings were commonly referred to as "catgut" strings, cats were never used as a source for gut strings[citation needed].
  • Sheep gut was the original source for natural gut string used in racquets, such as for tennis. Today, synthetic strings are much more common, but the best gut strings are now made out of cow gut.
  • Gut cord has also been used to produce strings for the snares that provide a snare drum's characteristic buzzing timbre. While the modern snare drum almost always uses metal wire rather than gut cord, the North African bendir frame drum still uses gut for this purpose.
  • "Natural" sausage hulls (or casings) are made of animal gut, especially hog, beef, and lamb. Similarly, Haggis is traditionally boiled in, and served in, a sheep stomach.
  • Chitterlings, a kind of food, consist of thoroughly washed pig's gut.
  • Animal gut was used to make the cord lines in longcase clocks and for fusee movements in bracket clocks, but may be replaced by metal wire.
  • The oldest known condoms, from 1640 AD, were made from animal intestine.[17]